5,574,898

1

DYNAMIC SOFTWARE VERSION AUDITOR
WHICH MONITORS A PROCESS TO
PROVIDE A LIST OF OBJECTS THAT ARE
ACCESSED

BACKGROUND OF THE INVENTION

For many years, there was little in the way of automated
“configuration management” in relation to computer soft-
ware development. As the early software “systems” were
developed, documentation and control of the “current ver-
sion” was most often accomplished as a de-facto manual
configuration management. A system was built, tested, the
components revised and the system rebuilt. Finally, the
system was installed and any future changes were made by
way of “patches” to the software system.

More recently, Computer-Aided Software Engineering
(CASE) environments have become helpful for complex
software projects, just as Computer-Aided Design (CAD)
systems have become helpful for complex hardware
projects. A few well known CASE systems is include:
UNIX/PWB,designed to run on AT&Ts UNIX programming
environment, includes the SCCS source code control system
and the MAKE configuration tool; RCS, a source code
control system that also runs on UNIX systems; CMS and
MMS, the Digital Equipment Corp. VAX/VMS equivalent
to SCCS and MAKE; ALS, the Ada Language System; and
Cedar, running on the Xerox PARC Computer Science
Laboratory system.

While prior art CASE systems as described above have
offered an improvement in the ability to keep track of
various configurations of software systems as they are built
and modified, the have limitations. One drawback is the lack
of “transparency” and “concurrency” to users in the area of
configuration management. For instance, the Master pro-
gram source codes (i.e., the basic or first versions of the
programs) are typically maintained in a Master Table and
changes by version are maintained in a Versions Table. The
various possible versions of a program (or system compris-
ing multiple programs) are not transparently available to
users. Thus, to build a given configuration of a system, a
System Builder cannot directly access the versions of the
programs to be used in the system build. Rather, control
must first be given to a Version Maker which then accesses
the Master Table to obtain the master program source(s) and
then gets and applies the appropriate version changes from
the Version Table. The modified program reflecting a des-
ignated version is then stored in a holding area. Finally,
control is transferred to a System Builder, which get its input
from the holding area, from which it “builds” the desired
system in a build area. Moreover, unless multiple holding
areas and attendant complex procedures for their use are
provided, there is a lack of concurrency in that only one
version of the system can be built at any one time.

Another shortcoming of prior art CASE systems is the
lack of capability to track and report progress on tasks or to
monitor and notify of changes in areas critical to others.

SUMMARY OF THE INVENTION

It is the object of the present invention to provide a CASE
system providing transparent access to multiple versions, the
ability to build different configurations concurrently without
interference, and additional monitoring and reporting capa-
bilities not found in known CASE systems.

2

The present invention features a CASE version-control
system that supports versioning of all file system objects:
files, directories, and links. Any type of file can be versioned,
including executables, bitmaps, and other non-text files.
Versions of directories record how the organization of the
source base evolves: renaming of source files, creation of

_ new source files, and so on.

10

15

20

25

30

35

40

45

50

55

60

65

The present invention also features Rule-Based Version
Selection in which users can create and use any number of
views, each of which selects a particular configuration of
source versions. Views are defined by configuration specs
consisting of a few powerful, general rules. Thus, there is no
need to specify hundreds or thousands of source versions
individually. Views are dynamic, updated by reevaluating
the rules that define it as needed. Newly-created versions can
thus be incorporated into a view automatically and instantly.

The system of the present invention further provides
Transparent Access to versions of objects. Each versioned
object appears to be an ordinary file or directory. This
transparency feature makes the system compatible with
common operating systems such as the UNIX open-systems
environment. Developers can continue to use their existing
tools—shells, editors, compilers, debuggers, and so on—no
modifications need be made to such tools. :

The present invention also features configuration auditing
which automatically produces configuration records, which
provide complete “bill-of-materials” documentation of soft-
ware builds. Each configuration record includes a listing of
all source file versions that were used, versions of build
tools, and all build options that were specified. Special
commands compare configuration records, showing the dif-
ferences between two builds of the same program. Other
commands can place version labels on object versions listed
in the configuration record. Whenever possible, the present
invention shares the derived objects produced by builds
among users. This saves both time and disk storage. In a
build that involves execution of multiple makefile build
scripts, the scripts can execute in parallel, either on a single
host or on a group of hosts in the local area network. A
view’s configuration spec can be defined in terms of the
configuration records produced by previous builds. The
exact source base for an individual program or an entire
release can be recreated instantly in a new view, thus
guaranteeing rebuildability of software systems.

The system minimizes data duplication, both for source
files (elements) and for build targets (derived objects). A
source file version is copied only when a developer wishes
to modify it. If a build script would create a redundant copy
of an object module or executable, the system automatically
creates a link to an existing instance. Versions of text files
are stored efficiently as deltas, much like SCCS or RCS
versions. Versions of non-text files are also stored efficiently,
using data compression.

In general, in one aspect, this invention features a data
processing system and method for controlling versions of
data, including a processor for executing instructions and for
retrieving data objects from and storing objects to a storage
device, a storage device for storing versions of objects, and
an object version selector for providing the processor with
access only to specific versions of target data objects as
determined by a set of selection rules. The selection rules are
evaluated for an object when that object is accessed by the
processor. Preferably, the version selector includes a means
for viewing the selected versions of the target objects as a
transparent file system having directories, files, and links.

In preferred embodiments, each data object has a path-
name for accessing the object from the data storage device,



